3 べき級数の収束半径

■今日の講義内容

絶対収束

収束半径とその計算方法

■講義中にやらなければならない事

基本演習1

■講義終了後次回までにやらなければならない事

今日の講義全体を振り返り(特に話の流れに留意して)内容を把握し直すこと。

基本演習 2

重要事項

 $\sum |p_n|$ が収束 \implies $\sum p_n$ も収束

定義 3.1 x のべき級数 $\sum a_n x^n$ に具体的な値 x=b を代入して得られる級数 $\sum a_n b^n$ が収束するとき、『べき級数 $\sum a_n x^n$ は x=b において収束する』と言います。

定義 3.2 x のべき級数 $\sum a_n x^n$ において具体的な値 x=b を代入したうえで各項別に絶対値をとって得られる級数 $\sum |a_n||b|^n$ が収束するとき、べき級数 $\sum a_n x^n$ は x=b において絶対収束すると言います。

定理 3.3 一般にx のべき級数において、

は成り立ちますが、逆は成り立ちません。しかし、

 $\mathbb{G}[c|<|b|$ であるような x=c で絶対収束』 \Longleftarrow $\mathbb{G}[x=b]$ で収束』

は成り立ちます。

定義 3.4 x のべき級数 $\sum a_n x^n$ は(十分大きな n について) $a_n \neq 0$ であるとします。このとき x に具体値を入れて得られる級数の収束について

- (1) 任意の *x* に対して絶対収束する。
- (2) ある $0 < R < \infty$ が存在して |x| < R で絶対収束し、|x| > R では収束しない。
- (3) x=0 でのみ絶対収束し、他では収束しない。

の何れかの場合が成立します。

そこで (1) の場合は ∞ 、(2) の場合は存在する R、(3) の場合は 0 をこのべき級数の収束半径と言います。

ただし、 $x = \pm R$ での絶対収束/発散は不明です。

事実 3.5 x のべき級数 $\sum a_n x^n$ は(十分大きな n について) $a_n \neq 0$ であるとします。このとき極限値

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

が有限値として、あるいは $+\infty$ に発散の意味で存在する時、その値が収束半径に他なりません。

3.5 具体的な収束半径の計算例

[教科書例題 3.1(1)] $\sum x^n$ 3.5.1

 x^n の係数を a_n とすると $a_n=1$ ですから明らかに $\lim \left| rac{a_n}{a_{n+1}}
ight| = 1$ 、収束半径は 1 です。 これは等比級数の和であり、|x| < 1 で収束していたと云う事実と一致しています。

[教科書例題 3.1(2)] $\sum \frac{1}{n!} x^n$ 3.5.2

 x^n の係数を a_n と書けば $a_n = \frac{1}{n!}$ ですから、

$$\left|\frac{a_n}{a_{n+1}}\right| = \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} = n+1 \to \infty \quad \text{as } n \to \infty$$

となって収束半径は ∞ 、即ち任意のxに対して絶対収束しています。

3.5.3 係数に0を含むべき級数の場合

これは絶対値をとっても厳密には"正項"級数にならないため、一般には色々難しい 点が多いですが、偶数番目、あるいは奇数番目だけが全て0であるような場合には巧い 方法があります。例えば級数 $\sum \frac{1}{(2n+1)2^n} x^{2n+1}$ の場合、x でくくると

$$x + \frac{1}{3 \cdot 2}x^3 + \frac{1}{5 \cdot 2^2}x^5 + \dots + \frac{1}{(2n+1)2^n}x^{2n+1} + \dots$$
$$= x\left(1 + \frac{1}{3 \cdot 2}x^2 + \frac{1}{5 \cdot 2^2}x^4 + \dots + \frac{1}{(2n+1)2^n}x^{2n} + \dots\right)$$

なので、括弧内が収束する範囲を考えれば良いことになります。 これは $x^2=y$ と置いて

$$1 + \frac{1}{3 \cdot 2}y + \frac{1}{5 \cdot 2^2}y^2 + \dots + \frac{1}{(2n+1)2^n}y^n + \dots$$

の収束半径をyのべき級数として求めてやってあとでxに変換する方向で考えましょう。 y のべき級数としての n 次の項の係数を a_n と書けば

$$\left| \frac{a_n}{a_{n+1}} \right| = \frac{(2n+3)2^{n+1}}{(2n+1)2^n} = \frac{2+\frac{3}{n}}{2+\frac{1}{n}} \cdot 2 \to 2$$

ですから、y の級数として収束半径は 2 です。従って x の級数としての収束半径は $\sqrt{2}$ であることが分かります。

Exercise

基本演習 1 [教科書問題 3.1] 次のべき級数の収束半径を求めて下さい。

(1)
$$\sum_{n=0}^{\infty} n! x^n$$
 (2) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ (3) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$

基本演習 2 [問題集 3.1] 次のべき級数の収束半径を求めて下さい。

(1)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 (2) $\sum_{n=0}^{\infty} (-1)^n (n+1) x^n$ (3) $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$

(4)
$$\sum_{n=0}^{\infty} \frac{x^n}{2^n}$$
 (5) $\sum_{n=1}^{\infty} \frac{x^n}{3^n n^2}$ (6) $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$

発展演習 3 [問題集 3.2] 次のべき級数の収束半径を求めて下さい。

(1)
$$x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + \dots$$

(2) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$

(2)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

(3)
$$x + \frac{2!}{3}x^2 + \frac{3!}{5}x^3 + \dots + \frac{n!}{2n-1}x^n + \dots$$

発展演習 4 次のべき級数の収束半径を求めて下さい。

(1)
$$\sum_{n=1}^{\infty} \frac{n^n}{n!} x^n$$
 (2) $\sum_{n=0}^{\infty} n^2 x^{2n}$

(3)
$$\sum (-1)^{n-1} \frac{x^n}{\log(n+1)}$$
 (4) $\sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}$

ただし、n!! は1個飛ばしの階乗で、便宜上 0!! = (-1)!! = 1 と定義します。