2025年5月23日(金) 令和7年度前学期 課題第2回 基礎解析Ⅲ 3C·3A 担当:笠井 剛

課題第2回

問題 1 増減・凹凸を調べて $f(x)=2\sin x-\sin^2 x\,(0\leq x\leq 2\pi)$ のグラフを描いてください。

問題 2 関数 $f(x)=rac{x^3+9x}{x^2+1}$ の増減・漸近線を調べてグラフの概形を描いてください(凹凸は調べなくて良い)。

出題: 2025年5月23日

通常提出期限: 2025 年 5 月 30 日 講義開始時

最終提出期限: 2025年5月31日 17時00分00秒

通常提出期限を過ぎたものは、撮影などして画像ファイル(jpg、pdf、png など一般的な形式のもの)にした上で、最終提出期限までに、Teams のチャットにて笠井剛宛に送ってください。通信トラブル等考えられますので、余裕をもって投稿してください。最終提出期限を過ぎたものは受け取りません(事故・疾病等の特別な事情のある場合は相談してください)。

氏名	学学番 年科号
----	------------

問題 1 増減・凹凸を調べて $f(x)=2\sin x-\sin^2 x\,(0\leq x\leq 2\pi)$ のグラフを描いてください。

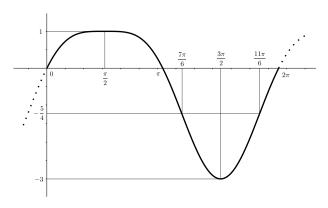
$$f'(x) = 2\cos x - 2\sin x \cos x = 2\cos x(1 - \sin x)$$

ですから、f'(x)=0 となるのは、 $x=\frac{\pi}{2},\frac{3\pi}{2}$ のみです。また、

$$f''(x) = -2\sin x - 2\cos^2 x + 2\sin^2 x = 4\sin^2 x - 2\sin x - 2 = 2(2\sin x + 1)(\sin x - 1)$$

ですから、f''(x) = 0 となるのは、 $x = \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{\pi}{2}$ です。

x	0		$\frac{\pi}{2}$		$\frac{7\pi}{6}$		$\frac{3\pi}{2}$		$\frac{11\pi}{6}$		2π
f'(x)	2	+	0	_	_	_	0	+	+	+	2
f''(x)	-2	_	0	_	0	+	+	+	0	_	-2
f(x)	0	_	1	7	$-\frac{5}{4}$	L	-3		$-\frac{5}{4}$	(0



変曲点は2点 $\left(\frac{7\pi}{6},-\frac{5}{4}\right),\left(\frac{11\pi}{6},-\frac{5}{4}\right)$ です。

問題 2 関数 $f(x)=rac{x^3+9x}{x^2+1}$ の増減・漸近線を調べてグラフの概形を描いてください(凹凸は調べなくて良い)。

この関数は任意の実数で定義され、

$$f(-x) = \frac{(-x)^3 + 9(-x)}{(-x)^2 + 1} = -\frac{x^3 + 9x}{x^2 + 1} = -f(x)$$

から奇関数です。従ってグラフは原点対称ですから $x \ge 0$ の部分のみ調べます。 また、分子の次数が分母よりも1だけ大きいので変形すると

$$f(x) = x + \frac{8x}{x^2 + 1},$$
 $f(x) - x = \frac{\frac{8}{x}}{1 + \frac{1}{x^2}} \to 0 \quad (x \to \pm \infty)$

となっており、直線 y=x は $x\to\pm\infty$ 双方における漸近線です。

導関数は

$$f'(x) = \frac{(3x^2 + 9)(x^2 + 1) - (x^3 + 9x)2x}{(x^2 + 1)^2} = \frac{(x^2 - 3)^2}{(x^2 + 1)^2}$$

なので f'(x)=0 となるのは $x=\sqrt{3}$ であり、 $f(\sqrt{3})=3\sqrt{3}$ です。また、無限遠方での極限値は

$$f(x) = \frac{x + \frac{9}{x^2}}{1 + \frac{1}{x^2}} \to \infty \quad (x \to \infty)$$

ですから、増減表・グラフは以下の通りです:

